Civil Services, Banking Jobs, Admission Alerts and Guidance Portal

Thursday, April 23, 2009


Pollution is the release of environmental contaminants.

The major forms of pollution include:

•    Air pollution, the release of chemicals and particulates into the atmosphere. Common examples include carbon monoxide, sulphur dioxide, chlorofluorocarbons (CFCs), and nitrogen oxides produced by industry and motor vehicles. Ozone and smog are created as nitrogen oxides and hydrocarbons react to sunlight.

•    Water pollution via surface runoff and leaching to groundwater.

•    Soil contamination occurs when chemicals are released by spill or underground storage tank leakage. Among the most significant soil contaminants are hydrocarbons, heavy metals, MTBE, herbicides, pesticides and chlorinated hydrocarbons.

•    Radioactive contamination, added in the wake of 20th-century discoveries in atomic physics. (See alpha emitters and actinides in the environment.)

•    Noise pollution, which encompasses roadway noise, aircraft noise, industrial noise as well as high-intensity sonar.

•    Light pollution, includes light trespass, over-illumination and astronomical interference.

•    Visual pollution, which can refer to the presence of overhead power lines, motorway billboards, scarred landforms (as from strip mining), open storage of trash or municipal solid waste.

•    Thermal Pollution, is a temperature change in natural water bodies caused by human influence

Sources and causes

Motor vehicle emissions are likely the leading cause of air pollution. China, United States, Russia, Mexico, and Japan are the world leaders in air pollution emissions; however, Canada is the number two country, ranked per capita. Principal stationary pollution sources include chemical plants, coal-fired power plants, oil refineries,[1] petrochemical plants, nuclear waste disposal activity, incinerators, large animal farms, PVC factories, metals production factories, plastics factories, and other heavy industry.

Some of the more common soil contaminants are chlorinated hydrocarbons (CFH), heavy metals (such as chromium, cadmium--found in rechargeable batteries, and lead--found in lead paint, aviation fuel and still in some countries, gasoline), MTBE, zinc, arsenic and benzene. Ordinary municipal landfills are the source of many chemical substances entering the soil environment (and often groundwater), emanating from the wide variety of refuse accepted, especially substances illegally discarded there, or from pre-1970 landfills that may have been subject to little control in the U.S. or EU.

Pollution can also be the consequence of a natural disaster. For example hurricanes often involve water contamination from sewage, and petrochemical spills from ruptured boats or automobiles. Larger scale and environmental damage is not uncommon when coastal oil rigs or refineries are involved. Some sources of pollution, such as nuclear power plants or oil tankers, can produce widespread and potentially hazardous releases when accidents occur.

In the case of noise pollution the dominant source class is the motor vehicle, producing about ninety percent of all unwanted noise worldwide.

Effects on human health

Pollutants can cause disease, including cancer, lupus, immune diseases, allergies, and asthma. Higher levels of background radiation have led to an increased incidence of cancer and mortality associated with it worldwide. Some illnesses are named for the places where specific pollutants were first formally implicated. One example is Minamata disease, which is caused by organic mercury compounds.

Adverse air quality can kill many organisms including humans. Ozone pollution can cause respiratory disease, cardiovascular disease, throat inflammation, chest pain and congestion. Water pollution causes approximately 14,000 deaths per day, mostly due to contamination of drinking water by untreated sewage in developing countries. Oil spills can cause skin irritations and rashes. Noise pollution induces hearing loss, high blood pressure, stress and sleep disturbance.

Regulation and monitoring

To protect the environment from the adverse effects of pollution, many nations worldwide have enacted legislation to regulate various types of pollution as well as to mitigate the adverse effects of pollution

International Efforts :

The Kyoto Protocol is an amendment to the United Nations Framework Convention on Climate Change (UNFCCC), an international treaty on global warming. It also reaffirms sections of the UNFCCC. Countries which ratify this protocol commit to reduce their emissions of carbon dioxide and five other greenhouse gases, or engage in emissions trading if they maintain or increase emissions of these gases. A total of 141 countries have ratified the agreement. Notable exceptions include the United States and Australia, who have signed but not ratified the agreement. The stated reason for the United States not ratifying is the exemption of large emitters of greenhouse gases who are also developing countries, like China and India.


The earliest precursor of pollution generated by life forms would have been a natural function of their existence. The attendant consequences on viability and population levels fell within the sphere of natural selection. These would have included the demise of a population locally or ultimately, species extinction. Processes that were untenable would have resulted in a new balance brought about by changes and adaptations. At the extremes, for any form of life, consideration of pollution is superseded by that of survival.

For mankind, the factor of technology is a distinguishing and critical consideration, both as an enabler and an additional source of byproducts. Short of survival, human concerns include the range from quality of life to health hazards. Since science holds experimental demonstration to be definitive, modern treatment of toxicity or environmental harm involves defining a level at which an effect is observable. Common examples of fields where practical measurement is crucial include automobile emissions control, industrial exposure (eg OSHA PELs), toxicology (eg LD50), and medicine (eg medication and radiation doses).

"The solution to pollution is dilution", is a dictum which summarizes a traditional approach to pollution management whereby sufficiently diluted pollution is not harmful. It is well-suited to some other modern, locally-scoped applications such as laboratory safety procedure and hazardous material release emergency management. But it assumes that the dilutant is in virtually unlimited supply for the application or that resulting dilutions are acceptable in all cases.

Such simple treatment for environmental pollution on a wider scale might have had greater merit in earlier centuries when physical survival was often the highest imperative, human population and densities were lower, technologies were simpler and their byproducts more benign. But these are often no longer the case. Furthermore, advances have enabled measurement of concentrations not possible before. The use of statistical methods in evaluating outcomes has given currency to the principle of probable harm in cases where assessment is warranted but resorting to deterministic models is impractical or unfeasible. In addition, consideration of the environment beyond direct impact on human beings has gained prominence.

Yet in the absence of a superseding principle, this older approach predominates practices throughout the world. It is the basis by which to gauge concentrations of effluent for legal release, exceeding which penalties are assessed or restrictions applied. The regressive cases are those where a controlled level of release is too high or, if enforceable, is neglected. Migration from pollution dilution to elimination in many cases is confronted by challenging economical and technological barriers.


The most satisfactory long-term solutions to air pollution may well be the elimination of fossil fuels and the ultimate replacement of the internal-combustion engine. To these ends efforts have begun in the United States, Japan, and Europe to develop alternative energy sources (see energy, sources of), as well as different kinds of transportation engines, perhaps powered by electricity or steam. A system of pollution allowances based on trading emission rights has been established in the United States in an attempt to use the free market to reward pollution reductions, and the international sale of surplus emission rights is permitted under the Kyoto Protocol (see below). Other proposed solutions include raising electricity and gasoline rates to better reflect environmental costs and to discourage waste and inefficiency, and mechanical controls on coal-fired utility plants.

In 1992, 150 nations signed a treaty on global warming at the UN-sponsored summit on the environment in Rio de Janeiro. A UN Conference on Climate Change, held in Kyoto, Japan, in 1997, produced an international agreement to combat global warming by sharply reducing emissions of industrial gases. Although the United States abandoned the treaty in 2001, saying it was counter to U.S. interests, most other nations agreed that year on the details necessary to make the protocol a binding international treaty, and the necessary ratifications brought the treaty into force in 2005.

Source : Wikipedia and other articles on net

No comments:

Post a Comment

Blog Widget by LinkWithin
©2000-2011 : Powered by Blogger.

© 2013 Competition Exam : Knowledge Portal, All Rights Reserved.